Index Sets and Computable Categoricity of CSC Spaces

Andrew DeLapo

University of Connecticut

Logic Seminar, University of Leeds March 19, 2025

Question

Given a topological space X, how hard is it to describe?

Two approaches:

Index Sets: Assign an index to each "computable topological space" and locate

 $\{e \in \omega : X \text{ is homeomorphic to the space with index } e\}$

in the arithmetic hierarchy.

② Computable Structure Theory: Given two computable presentations of X, does there exist a computable homeomorphism between them? If not, how many computable copies of X exist up to computable homeomorphism?

Polish Metric Spaces

These types of questions have been studied (see e.g. Thewmorakot 2023) for Polish (complete and separable) metric spaces.

Index Sets (Thewmorakot 2023)

- $\{e : e \text{ is an index for a Polish space}\}$ is Π_2^0 -complete.
- $\{e : e \text{ is an index for a discrete Polish space}\}$ is Π_1^1 -complete.
- $\{e : e \text{ is an index for a perfect Polish space}\}$ is Π_2^0 -complete.

"Computable isomorphisms" for Polish spaces are computable isometries.

Categoricity

- $2^{\mathbb{N}}$ is computably categorical (Melnikov 2013).
- $\mathbb{N}^{\mathbb{N}}$ is computably categorical (Thewmorakot 2023).
- C[0,1] is not computably categorical (Melnikov 2013).

Computability and CSC Spaces

Definition (Dorais 2011)

A countable second-countable space (CSC space) is a triple (X, \mathcal{U}, k) where X is a countable set, $\mathcal{U} = (U_i)_{i \in \omega}$ is a countable basis for open sets in X, and k is a function $X \times \omega \times \omega \to \omega$ such that

- for all $x \in X$, there is $i \in \omega$ such that $x \in U_i$,
- for all $x \in X$ and $i, j \in \omega$, if $x \in U_i \cap U_j$, then $x \in U_{k(x,i,j)} \subseteq U_i \cap U_j$.

CSC spaces provide an excellent context for studying topological facts in computability theory and reverse mathematics (Dorais 2011, Shafer 2020, Benham et al. 2024).

Example

Let \mathbb{N}_{IND} be the CSC space (ω, \mathcal{U}, k) with $U_i = \omega$ for all *i*, and k(x, i, j) = i. Then \mathbb{N}_{IND} has the **indiscrete topology**.

Example

Let \mathbb{N}_{DIS} be the CSC space (ω, \mathcal{U}, k) with $U_i = \{i\}$ for all i, and k(x, i, j) = i. Then \mathbb{N}_{DIS} has the **discrete topology**.

Example

Let \mathbb{N}_{IST} be the CSC space (ω, \mathcal{U}, k) with $U_i = [0, i]$ for all i, and $k(x, i, j) = \min(i, j)$. Then \mathbb{N}_{IST} has the **initial segment topology**.

1 Index Sets

② Computable Categoricity

Definition

A CSC space (ω, \mathcal{U}, k) is **computable** if \mathcal{U} is uniformly computable and k is computable. That is, there are indices m and n such that Φ_m and Φ_n are total, $k = \Phi_n$, and

$$x \in U_i \iff \Phi_m(i, x) = 1$$

for all $i, x \in \omega$.

Then $\langle m, n \rangle$ is an **index** for a CSC space. Write

 $CSC = \{e : e \text{ is an index for a CSC space}\}.$

Theorem

The set CSC is Π_2^0 -complete.

Andrew DeLapo (UConn) Computability and CSC Spaces

March 19, 2025

Definition

A set B is **many-one reducible** to a set A, written $B \leq_m A$, if there is a computable function f such that

$$x \in B \iff f(x) \in A$$

for all $x \in \omega$.

Definition

Let Γ be a complexity class.

- A set A is Γ -hard if $B \leq_m A$ for all $B \in \Gamma$.
- A set A is Γ -complete if $A \in \Gamma$ and A is Γ -hard.

Our goal is to classify the following sets:

 $IND = \{e : e \text{ is an index for a CSC space homeomorphic to } \mathbb{N}_{IND}\}$ $DIS = \{e : e \text{ is an index for a CSC space homeomorphic to } \mathbb{N}_{DIS}\}$ $IST = \{e : e \text{ is an index for a CSC space homeomorphic to } \mathbb{N}_{IST}\}$

We classify their complexity as subsets of CSC.

Definition (Calvert 2005, Knight)

Let Γ be a complexity class, let I be a set, and let A be a set.

- The set A is Γ -within I if $A = B \cap I$ for some $B \in \Gamma$.
- The set A is Γ -hard within I if for every $B \in \Gamma$, there is a computable function f such that

$$x \in B \iff f(x) \in A$$

and $f(x) \in I$, for all $x \in \omega$.

• The set A is Γ -complete within I if A is Γ -within I and Γ -hard within I.

Idea

Use I = CSC and A = IND, DIS, and IST.

Strategy

Let Γ be a complexity class, and let $A \subseteq CSC$ be an index set of CSC spaces with some desired property. To show A is Γ -hard within CSC:

- **1** Fix a set $B \in \Gamma$, and let $e \in \omega$.
- **2** Define a sequence $\mathcal{V}^e = (V_i^e)_{i \in \omega}$ of subsets of ω uniformly computable in e.
- **3** Close \mathcal{V}^e under finite intersection via primitive recursion (see Dorais 2011) to get a CSC space $X_e = (\omega, \mathcal{U}, k)$ with index $\langle m(e), n(e) \rangle$ uniformly computable in e.
- (1) Show X_e has the desired property if and only if $e \in B$. (It follows that $\langle m(e), n(e) \rangle \in A$ if and only if $e \in B$.)

Theorem

IND is Π_1^0 -complete within CSC.

Theorem

DIS is Π_3^0 -complete within CSC.

Theorem

IST is Π_3^0 -complete within CSC.

12/26

Index Set Results

Theorem

DIS is Π_3^0 -complete within CSC.

Proof sketch.

A CSC space (X, \mathcal{U}, k) is discrete if and only if

$$\forall x \exists i \forall y (y \in U_i \longleftrightarrow x = y).$$

Fix $e \in \omega$. The CSC space X generated by

$$V_{\langle x,y\rangle} = \begin{cases} \{x\} \cup \{s : \Phi_{e,s}(y) \downarrow\} & \text{if } y \ge x \\ \omega & \text{otherwise} \end{cases}$$

is discrete if and only if W_e is coinfinite.

The proof for IND is similar, but my proof for IST is a lot more complicated.

Andrew DeLapo (UConn)

Computability and CSC Spaces

Theorem

IST is Π_3^0 -complete within CSC.

Proof sketch.

Fix $e \in \omega$. Let $W_e = \{x_0, x_1, x_2, \dots\}$. For each s, let ℓ_s be the least ℓ such that $[\ell, x_s] \subseteq W_{e,s}$. For all $i \in \omega$, let

$$V_{2i} = \{ s \in \omega : \ell_s \le i \}$$

$$V_{2i+1} = \{ s \in \omega : \ell_s < \ell_i \text{ or } (\ell_s = \ell_i \text{ and } x_s \le x_i) \}.$$

Verifying that this works requires proving two key facts:

- $\lim_{s} \ell_s = \infty$ if and only if W_e is coinfinite.
- If W_e is coinfinite, then for all *i* there is *j* such that $V_{2i} = V_{2j+1}$.

1 Index Sets

2 Computable Categoricity

Computable Categoricity

Definition

Let X be a CSC space.

- The weak computable dimension of X is the number of computable copies of X up to computable homeomorphism.
- X is weakly computably categorical if X has weak computable dimension 1.

Theorem

 \mathbb{N}_{IND} and \mathbb{N}_{DIS} are weakly computably categorical.

Proof.

Let X be a computable indiscrete CSC space. Any computable bijection $X \to \mathbb{N}_{IND}$ is a computable homeomorphism. The analogous fact holds for \mathbb{N}_{DIS} .

Definition (Dorais 2011)

Let (X, \mathcal{U}, k) and (Y, \mathcal{V}, ℓ) be CSC spaces.

- A function f : X → Y is effectively continuous if f is computable and there is a computable function Φ such that for all x and i, if f(x) ∈ V_i, then x ∈ U_{Φ(x,i)} ⊆ f⁻¹(V_i).
- A function $f: X \to Y$ is an **effective homeomorphism** if f is a bijection and both f and f^{-1} are effectively continuous.

Definition

Let X be a CSC space.

- The **computable dimension** of X is the number of computable copies of X up to effective homeomorphism.
- X is **computably categorical** if X has computable dimension 1.

1 Quantifiers:

- For computable structures \mathcal{A} and \mathcal{B} , the statement " \mathcal{A} and \mathcal{B} are computably isomorphic" is Σ_3^0 .
- For computable CSC spaces X and Y, the statement "X and Y are computably homeomorphic" is Σ_4^0 .
- For computable CSC spaces X and Y, the statement "X and Y are effectively homeomorphic" is Σ_3^0 .

2 Effective homeomorphisms preserve effective properties.

Definition

- For a CSC space (X, \mathcal{U}, k) , a **discreteness function** for X is a function $d: X \to \omega$ such that $U_{d(x)} = \{x\}$ for all $x \in X$.
- A CSC space is **effectively discrete** if it has a computable discreteness function.

Lemma

Let X and Y be effectively homeomorphic CSC spaces, and let d_X be a discreteness function for X. Then Y has a discreteness function d_Y computable from d_X . In particular, if X is effectively discrete, then so is Y.

Fact

There are computable discrete CSC spaces which are not effectively discrete (see e.g. Dorais 2011 and Benham et al. 2024).

Proposition

 \mathbb{N}_{DIS} is not computably categorical.

Theorem

For each $e \in \omega$, there is a computable discrete CSC space X_e such that X_e has a unique discreteness function d_e , and $d_e \equiv_T W_e$.

Corollary

 \mathbb{N}_{DIS} has computable dimension ω .

Fact

If X is homeomorphic to \mathbb{N}_{IST} , then the homeomorphism is unique.

Theorem

For each e such that W_e is noncomputable, there is a computable CSC space X_e such that X_e has the initial segment topology, and the Turing degree of the unique homeomorphism $X_e \to \mathbb{N}_{IST}$ is the same as that of W_e .

Corollary

 \mathbb{N}_{IST} is not weakly computably categorical.

In summary:

CSC Space	Weak Computable Dimension	Computable Dimension
\mathbb{N}_{IND}	1	1
\mathbb{N}_{DIS}	1	ω
\mathbb{N}_{IST}	ω	ω

22 / 26

Investigate computable categoricity for other CSC spaces:

- Cofinite topology on $\mathbb N$
- \mathbb{Q} with the Euclidean topology

Question

Are there any other (non-trivial) CSC spaces with computable dimension 1?

Question

What should it mean for a CSC space to be computably categorical relative to a degree \mathbf{d} ?

Question

Is there a CSC space with no computable presentation?

Definition

Let α be a countable ordinal. Write α_{IST} for the CSC space $(\alpha, (\beta)_{\beta < \alpha}, k)$ where $k(x, i, j) = \min(i, j)$.

Proposition

If α is a noncomputable ordinal, then α_{IST} has no computable presentation.

Proof idea.

Suppose $(\omega, \mathcal{U}, k) \cong \alpha_{IST}$. For $a, b \in \omega$, say that $a <_{\alpha} b$ if and only if $\exists i (a \in U_i \land b \notin U_i)$. Then $(\omega, <_{\alpha}) \cong \alpha$ as linear orders.

References I

- Benham, Heidi et al. (2024). "The Ginsburg–Sands theorem and computability theory". In: Advances in Mathematics 444, p. 109618. ISSN: 0001-8708. DOI: https://doi.org/10.1016/j.aim.2024.109618. Calvert, Wesley (2005). "The Isomorphism Problem for Computable Abelian p-Groups of Bounded Length". In: The Journal of Symbolic Logic 70.1, pp. 331–345. ISSN: 00224812. Dorais, François G. (2011). Reverse mathematics of compact countable second-countable spaces. arXiv: 1110.6555 [math.LO]. Melnikov, Alexander G. (2013). "Computably Isometric Spaces". In: The Journal of Symbolic Logic 78.4, pp. 1055–1085. ISSN: 00224812, 19435886.Shafer, Paul (2020). "The strength of compactness for countable
 - complete linear orders". In: *Computability* 9.1, pp. 25–36. ISSN: 2211-3568. DOI: 10.3233/com-190262.

Thewmorakot, Teerawat (2023). "Computability on Metric Polish Spaces". PhD thesis. University of Connecticut.

26 / 26