Skip to main content

Zlatko Papic (School of Physics and Astronomy, University of Leeds) – Quantum many-body scars: a new paradigm of order amidst quantum chaos

Category
Mathematical Physics at Leeds (MaPLe)
Date
@ MALL
Date
@ MALL, 10:00
Location
MALL
Speaker
Zlatko Papic
Affiliation
School of Physics and Astronomy, University of Leeds

The quest to understand out-of-equilibrium behaviour of complex quantum systems represents one of the frontiers of contemporary quantum science. For a long time, the prevailing belief has been that complex quantum systems, comprising many interacting degrees of freedom, all suffer the same inevitable fate: that of thermalisation, whereby the system relaxes towards a featureless thermal state, completely "forgetting" its initial condition. However, a flurry of recent works has unearthed a new paradigm of behaviour in many well-known physical systems, including Rydberg atoms, lattice gauge theories, and certain kinds of frustrated magnets. Such systems have been understood to possess a subtle breakdown of ergodicity, now commonly known as "quantum many-body scars". Quantum many-body scars exhibit fascinating properties, such as extreme sensitivity to initial conditions: while a system initialised randomly undergoes chaotic dynamics and thermalisation, specific initial conditions can result in persistent dynamical revivals, surpassing native thermalisation timescales. The discovery of quantum many-body scars has not only deepened our understanding of many-body quantum mechanics, but it also has direct practical relevance for improving the control over the delicate physical phenomena underpinning quantum technologies. In this talk, I will present a pedagogical overview of this fascinating new field of physics, highlighting a few of the remaining mysteries for theory and future experiments.